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ABSTRACT

Monitoring territorial bird populations usually entails sampling rather than enumeration.
Sample results are often negatively biased by the failure to account for birds present but
not detected. One source of such bias, undefined until recently, is “availability”, the
probability that a bird that is present in the count area produces a cue that is potentially
detectable. Availability is a precondition to detection, which may be constrained by
ambient noise, sensory acuity of the observer, etc. The probability that a cue, once given,
is detected by an observer, is “detectability.” Detection probability is the product of
availability and detectability.

For aural counts, which are most often used with territorial land birds, such cues are
typically songs or other sounds. I explored the underlying causes of availability, and
methods for estimating it, with a Monte Carlo simulation model driven by the probability
of singing and an independent probability of continuing a behavior (sing/not sing), once
begun. According to the results of this simulation, song production is a linear function of
probability of singing, independent of the probability of continuing and largely
independent of the scale at which it is measured. It is relatively simple to estimate the
probability of singing from song production rates during short point counts. Availability
increases, in the model, as a power function of singing rate, with high probability of
continuing reducing this power. These power functions should be estimable if estimates
of continuation probability can be obtained, but the most obvious short-term estimator
proved uncorrelated with continuation probability. The effort to find another estimator
was abandoned because availability proved to be estimable directly from brief samples
with linear functions.

I investigated the feasibility of estimating availability directly from data that can be
collected easily during brief point counts, such as stops on the Breeding Bird Survey
(BBS). One-minute estimates of singing rate (songs per minute) were poor predictors of
availability, regardless of sample size, in line with the power relationship described
above. On the other hand, the probability that a bird singing in the second half of the
count period was also singing in the first half, when averaged over at least 25 samples,
explained 90% of the variation in the true availability of the sampled bird. This
probability is used in a recently published method for estimating detection probability
(Farnsworth et al. 2002) that is based on capture-recapture logic. The results of this
simulation study suggest that availability can be estimated easily on the BBS by dividing
the count period in half and synonymizing the singers in the second half with those in the
first.



INTRODUCTION

Assessing the conservation status of wildlife populations requires monitoring. Most of the
many monitoring techniques in use involve sampling rather than enumeration. Both the
precision and bias of such samples must be estimated (Thompson 2002). An important
potential source of bias is the proportion of animals present that are not detected during
sample periods. Nondetection can result from a weak signal that may be overlooked, but
also from the absence of a signal due to the inactivity of an animal. These two sources are
conveniently termed “detectability” and “availability, ” respectively (McCallum in press).
Having only recently been identified as a parameter that should be estimated
independently (Farnsworth et al. 2002), availability remains under-investigated
conceptually and mathematically.

AVAILABILITY AND DETECTABILITY

McCallum (in press) defined a set of heuristic parameters designed to capture important
aspects of the natural history of singing in territorial land birds, as well as the
phenomenology of observation and detection of these songs by human observers. Briefly,
in this approach,

P = ps pd|s (1)

where P is the probability of detecting a bird that is present during a count period of m
minutes,  ps (availability) is the probability that an average bird sings (or produces some
other detectable cue) at least once during that period, and pd|s (detectability) is the
probability that the bird is detected, given that it sings.

For detectability,

pd|s  = 1-(1- p1d)s (2)

where p1d is the probability of detecting an average cue; and s is the number of cues, i.e.,
songs or other detectable acts, expected during a count period that contains at least one
cue.  Parameter p1d is a measure of conspicuousness, i.e., it captures reductions in
detectability due to amplitude of the cues, auditory acuity of the observer, attentiveness
of the observer, and masking of the cues by other cues and extraneous stimuli (McCallum
in press). Parameter s is the number of cues produced during a count period, independent
of their intensity. High cue abundance mitigates all four causes of non-detection, by
giving the observer multiple opportunities to make the single detection that is needed to
count an individual. All these parameters are specific to the duration of the count period
m (McCallum in press), so expected cue abundance can be increased by increasing m
(count period duration) or s/m (singing rate, i.e., songs per minute). Detectability ( pd|s) is
therefore the probability of detecting a bird at least once during a count period, given that
it gives at least one cue during the count period.



Equation (2) quantifies the intuitive relationship between singing rate and the likelihood
of detecting a singing individual. Even inconspicuous cues (low p1d) can result in
detection when they are numerous (high s). For example, p1d = 0.2, as one might find
during an intense dawn chorus, translates to pd|s = 0.996, with a realistic s of 25, or 5
songs per min in a 5-min count period. It follows that availability may be of more
concern than detectability in the estimation of P.

The expected value of availability is 1 if the expected value of s is ≥ 1, so it would appear
that availability is of no concern if a mere one song is expected per count period. Beyond
that, further singing does not improve availability (which cannot exceed 1), although it
does increase detectability through exponentiation of the probability (1-p1d) of not
detecting an average cue. But this is only the expected value of availability ( ps), under
the (usually tacit) assumption of statistical independence of all songs. For example, if 60
songs are performed in an hour, one song is expected to occur each minute, and the
expected value of availability for 1-min counts is 1, obviating the need to estimate it. This
assumes no stochasticity, through which, say, 0, 2, or 3 songs might easily occur in some
1-min periods, despite the average rate of 1 song per minute. Stochasticity can be
accounted for by an estimate of the variance in singing rate. It might prove necessary to
have a singing rate of, say, three songs per minute to ensure that at least 1 song would
occur every minute, with an acceptable probability of say, 0.95.

But,  the natural history of avian singing indicates a more severe challenge to the
equation of availability with singing rate. Birds tend to sing in bouts, during which many
(e.g., several dozen) songs are produced each minute, followed by periods of silence,
which may last longer than most point count periods (which seldom exceed 10 min in
duration). The average value of s over a large span of count periods could be >>1, and
some of them still could be songless. It is for this reason that availability must be
assessed, independently of mean singing rates.

METHODS FOR ESTIMATING P

The recent flurry of publications on detection probability (Nichols et al. 2000, Buckland
et al. 2001, Bart and Earnst 2002, Rosenstock et al. 2002, Farnsworth et al. 2002, and
especially Thompson 2002) suggests that changes in sampling techniques may be
imminent. These authors advance four largely independent methods for estimating
detection probabilities. The double-observer method (Nichols et al. 2000) estimates
auditory acuity and attentiveness of the observer, which are components of detectability
(McCallum in press) by comparing the results from two observers. The double-sampling
method (Bart and Earnst 2002) estimates availability in intensive study plots and uses it
to correct rapid estimates made in these and other plots. The distance method (Buckland
et al. 2001) estimates detectability by means of the fall-off in detections with distance
from the observer. The removal method (Farnsworth et al. 2002) estimates availability by
comparing singing activity in two subsections of a count period. This last method is of
particular interest because it is the first to explicitly decouple availability and
detectability, and because it claims that availability can be estimated concurrently with



rapid point counts, rather than requiring intensive nest-finding and territory-mapping
efforts (Bart and Earnst 2002).

In all four methods, N = C / P, where N is the estimated number of animals in a sample
area, C is the sample count of animals in that area, and P is the correction factor or
detection probability. The removal method of Farnsworth et al. (2002) uses capture-
recapture logic to estimate availability. This is a promising approach. (The claim
(Farnsworth et al. 2002:415-416) that the removal model estimates the product of
availability and detectability is erroneous, but this does not diminish the usefulness of the
model for estimating availability). The fundamental relationship used for capture-
recapture estimation is C1/N = R/C2, where N is the true number of animals present and
C1 is the number captured, or counted, in the initial “capture” session. Clearly, R / C2 is
equivalent to P, where C2 is the count of individuals in the second, “recapture” session,
and R is the number of individuals in C2 that were also in the set C1. Estimating P as R /
C2 allows estimation of N as C1 / P. (The removal model estimates N from C1 and the
number of captures in the second session that are not recaptures. The latter is C2-R, so the
removal and recapture approaches are mathematically interchangeable. I use the
recapture approach because the focus here is on availability rather than N. )

A simple numerical example will confirm how this approach works. Suppose that 10-min
point-count survey periods are divided into two consecutive 5-min blocks. Suppose that
the probability of a bird singing at least once in a 5-min period is 0.5, and that singing
probabilities in consecutive blocks of time are independent. For simplicity, assume
further that only one bird can be present in a sample area. There are four possible
outcomes for 10-min survey periods, each occurring with an equal probability of 0.25:
00, 01, 10, 11, where, for example, 01 indicates silence in the first 5 min, followed by at
least one song in the second period. Under these conditions, 50% of the samples have a
detection in the second session (C2), and 50% of these are “recaptures” (R) of an
individual from the first session. The method correctly recovers P = 0.5 from such
results.

Capture-recapture methodology was developed primarily for overnight trapping sessions
at least 24 hours apart. Under such circumstances, the assumption of the model that the
captures on the two nights are statistically independent is at least somewhat plausible.
But, given the widespread practice of singing in bouts by birds, the independence of
events (e.g., songs) < 10 min apart is in question. In nature, cues are frequently clumped
in time. For example, Scott et al. (unpublished) showed that once a bout of singing by a
Least Bell’s Vireo (Vireo bellii pusillus) began, it was highly likely to continue, as was a
silent period (see also Hailman et al. 1985). The effect of clumping of this sort on
realized detection rates and availability has not been explored.

It may be that the removal model can deliver an unbiased estimate of availability even
when singing in the two sessions of a count are not independent, if the estimate is based
on data pooled from a number of independent counts (e.g., stops on a BBS route).
Although the mark-recapture approach is typically used to estimate N for each site,
estimating an aggregate measure of abundance for a set of sites assumed to be random



samples from the same population (e.g., Farnsworth et al. 2002, MacKenzie et al. 2002,
Royle and Nichols 2003) is preferable for point-count data.

OBJECTIVES OF THIS STUDY

In this study I use Monte Carlo simulation to investigate the general relationship between
singing rate and availability, paying particular attention to the estimation of availability
using mark-recapture logic. The following questions are addressed explicitly.

1. Can availability be estimated directly from singing rates estimated during brief point
counts?
a. Can availability at a single site be estimated from the local estimate of singing

rate (thereby permitting estimation of N for single sites)?
b. If not, can average availability for a set of sites be estimated from an estimate of

average singing rate in those sites?
2. Can availability be estimated with mark-recapture analysis of patterns of singing and

silence during brief point counts?
a. Can availability at a single site be estimated from the local estimate of R/C2

(thereby permitting estimation of N for single sites)?
b. If not, can average availability for a set of sites be estimated from pooled R/C2

data?

Simulated data are actually more dependable than field data for preliminary explorations
of this sort, because the causes of the variation in the data are explicit. In the present case,
the probability of singing an individual song is completely responsible for singing rate,
and the probability of continuing a behavior is, independently, responsible for bout
structure. All other parameters, such as those defined above, are emergent properties of
the interaction between these two.

METHODS

THE MODEL

Behavior of a single individual is entirely determined by the following simple
parameters:

1. Time increment. The shortest period comprising a single song and one inter-song
interval of silence is defined as the unit of time in the simulation. Song duration and
the inter-song interval were both set at 1, resulting in a minimal time-increment of 2
sec. The simulation incremented, 2 sec at a time, through 1 hr of possible singing. An
entire hour was simulated because, for many territorial land birds, several periods of
extended singing and silence are accommodated in a period of this duration. Standard
count periods of 3-10 min often will not accommodate several cycles of  singing and
silence, and hence are subject to selection bias (Thompson 2002).



2. Probability of singing. At each time step, the bird sang with probability PROBSING.
This parameter assumed the values 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45,
0.55, 0.65, 0.75, 0.85, and 0.95 in the simulation. A state variable, SING, was set at 1
with the binomial probability PROBSING, otherwise it was set at 0. The values of
PROBSING used in the simulation are equivalent to the following s/m values: 0.3, 0.6,
1.5, 3, 4.5, 6, 7.5, 10.5, 13.5, 16.5, 19.5, 22.5, 25.5, 28.5. That is, only the two lowest
values of PROBSING yield expected values of availability that are <1.

3. Probability of continuing. The tendency for a bird to continue what it was doing was
modeled with parameter CONTPROB. This parameter introduces different levels of
serial dependence, from none to almost total (90%). The probability of continuing /
discontinuing the current behavior was CONTPROB / 1 – CONTPROB. If the simulation
returned a “discontinue” order, the next behavior was determined by the value of
PROBSING. PROBSING was called at every time step, but the output was overridden
when CONTPROB resulted in a continue order.  CONTPROB was set at 0 to 0.9 in
increments of 0.1. CONTPROB = 0 is the special case in which every song event is
independent of every other. This condition explores stochasticity in the absence of
serial dependency. Other values of CONTPROB indicate the degree of serial
dependency in the SING (0/1) decision.

ASSAYS

AVAILABILITY was calculated as active minutes / 60 for each rep. An active minute is one
in which at least one song occurs. One song is considered sufficient indication of the
presence of an individual in most point-count protocols. Thus, AVAILABILITY captures the
proportion of minutes in which a bird that is present is actually available for counting by
aural means.

Songs per minute (SPM) was calculated as total songs produced in one hour divided by
60. SPM and  AVAILABILITY are emergent variables that are used to characterize the
simulated singing behavior. These variables could be used to estimate P and thereby N. In
real point counts, however, 60 minutes are not available for estimating SPM and
AVAILABILITY in this way. SONGS is defined as the number of songs simulated for each
minute. SONGS is used as an estimator of SPM. R11 is the proportion of minutes preceded
by an active minute that are also active, equivalent to R / C2 above. It is an estimate of the
probability of continuing to sing, taken during a very short segment of time. The two
questions of this study address the correlation between these parameters estimated in very
brief samples, and the emergent variables they are used to estimate.

STATISTICAL ANALYSES

To determine if higher values of CONTPROB biased the number of songs in a simulation
run, I conducted a 2-way ANOVA, with interactions, of the effects of CONTPROB and
PROBSING on total songs in a 1-hr simulated soundscape. Statistically significant results
for this test could require an adjustment for overall cue abundance to make all
combinations of PROBSING and CONTPROB equivalent and thereby comparable.



To address the the predictability of availability from singing rate,  I averaged SONGS over
1, 2, 5, 10, 25, 50, and 60 randomly drawn 1-min samples from each simulated hour. The
random draw was conducted by ordering the 60 min of each rep in random order and then
retaining the first 1, 2, 5, ... 60 observations, so the average of SONGS for 60-min samples
was identical to SPM. Each minute of each rep can be thought of as a random sample
from a population of sites all having the same probability of singing, continuation
probability, and realized availability. I regressed realized AVAILABILITY (i.e., calculated
over the entire 60-min simulation) against the estimates of singing rate to build models
for estimating availability from singing rate. The coefficient of determination (r2) was
used as a measure of confidence in a model.

To address the predictability of AVAILABILITY with the removal method, I randomly drew
1, 2, 5, 10, 25, 50, and 60 2-min sequences from each simulated hour, as was done with
singing rate. If singing occurred in the second minute, the value of R11 was set to1 if
singing occurred in the first minute, 0 if it did not. This probability was averaged over the
number of samples. (Sample size was reduced by 1 if the first minute of the original 60-
min simulation appeared in the random sample.) I regressed realized AVAILABILITY (i.e.,
calculated over the entire 60-min simulation) against these estimates of availability to
build models for estimating availability from these estimates. The coefficient of
determination (r2) was used as a measure of confidence in a model.

RESULTS

DESCRIPTIVE STATISTICS

The entire simulation produced 2,520,000 lines of output, or, one hour in 2-sec
increments for 10 replicates each of 14 values of PROBSING, and 10 values of CONTPROB.

CONTPROB had no effect on total songs, independent of PROBSING. Although PROBSING
was highly significant in the full factorial 2-way ANOVA, CONTPROB was not (F = 1.46,
df = 9, 1260, p = 0.1590), nor was the interaction term (F = 0.85, df = 117,1260, p =
0.8633). There was no need, therefore, to adjust for total song production in analyzing the
results of the simulations. Further confidence in this statement is added by the nearly
perfect correlation among PROBSING, total songs, and SPM (all > 0.998). The actual song
count in each minute of the simulation was also highly correlated with PROBSING (r =
0.914), the 9% decrement presumably indicating the effect of stochasticity on the 1-min
samples.

AVAILABILITY increased with PROBSING (Fig.1), and decreased with CONTPROB (Fig. 2),
as expected. Of interest to designers of monitoring schemes is the value of PROBSING
required to make AVAILABILITY = 1. Given that the time increment used throughout the
simulation was 2 sec, a maximum of 30 songs could occur in any minute, and therefore a
probability of singing of only 0.033 would be required to make AVAILABILITY unity, if all



songs are independent events. In fact, the observed mean AVAILABILITY was
approximately 0.8 for PROBSING = 0.05, instead of the expected value of 1. This 20%
decrease in AVAILABILITY, when CONTPROB = 0, is the contribution of stochasticity to the
problem. Non-independence of singing events exacerbates this problem (Fig. 2), leading
to an observed AVAILABILITY of around 20% with low probability of singing and very
high continuation probability. This result from a PROBSING with an expected
AVAILABILITY of 1 crystallizes the joint problems of stochasticity and non-independence
for sampling in general.

QUESTIONS

Question 1. Short-term Singing Rate Predicts Availability

Figure 1 shows that AVAILABILITY is a power function of the probability of singing, with
the power determined by CONTPROB. This relationship, coupled with the high correlation
between SONGS and PROBSING (r = 0.91) predicts poor performance of a linear prediction
model of AVAILABILITY on SONGS, which was the case. The coefficient of determination
(r2) was nearly constant (0.39 to 0.44) across the range of sample sizes (Fig. 3). Needless
to say, estimates of N for single point counts, corrected with this estimator of availability,
will not be great improvements over the raw counts.

Question 2. Short-term Presence/Absence of Song Predicts Availability

Estimates of availability obtained during two consecutive minutes of standard point
counts (R11) were highly correlated with realized AVAILABILITY calculated over the entire
60-min period of simulated singing. When all minutes of a simulated hour were averaged,
the resulting regression equation was AVAILABILITY = 1.022 * R11 – 0.0263 (F = 37019,
df = 1, 1392 , p < 0.0001, r2 = 0.9637  ). This is equivalent to the 60-sample estimate. The
coefficient of determination increased with sample size (Fig. 3), reaching 0.9 at a sample
size of 25 (i.e., 90 % of the variation in AVAILABILITY is explained with 25 random 2-min
samples). The low predictive power of the single samples (r2 = 0.4271), however, does
indicate that accurate estimates of N for single point counts are not attainable with this
estimator of availability.

DISCUSSION

SOURCES OF BIAS

Conclusions drawn from the results of a simulation model have two major sources of
bias. As with all data, simulated data can be mishandled, analyzed incorrectly, and
interpreted illogically. A variety of institutional structures are in place to minimize this
source. Additionally, simulation models must be both logically consistent and
biologically realistic.



Errors in data handling and analysis can only be caught by careful proof-reading and
conducting redundant analyses with alternative data sets. This model was built in stages,
and preliminary results were analyzed at each stage. After completion of this study, the
code was cleaned up, modules were concatenated, and the entire simulation was run from
start to finish. New code was written for all analyses, and discrepancies among results of
earlier and final runs were eliminated. Nevertheless, the way one author conceptualizes
certain processes is likely to contain some hidden biases. If the results of this study are
important, then it should be replicated by another modeler, from scratch, to assess the
robustness of the results reported here.

As for biological realism, it would have been a simple matter to vary parameters for
availability and detectability, independently, and see the range of bout structures that
resulted. Such  results would be self-fulfilling prophesies, though, and they would be
open to the criticism that availability < 1 was forced into some replicates. The route
actually taken, of simply varying the tendency to sing, and the serial dependence of that
tendency on the immediately-preceding behavior, is not subject to that criticism.
AVAILABILITY was an emergent property of the more naturalistic song production
properties, as it presumably is in nature.

It is not known if a bout of birdsong is produced by the interplay between probability of
singing and probability of continuing, as modeled here. This is a plausible model, but it
also possible that singing birds pause only because of interruptions, rather than some
Markov process. For present purposes, the realism of the model does not depend upon the
underlying mechanisms. What matters is whether the resulting phenomenology, the bout
structure, brackets the range of variation of naturally-occurring bouts.

There was, however, an intentional bias in this objective. The purpose of the study was to
investigate the impact of clusters of songs interspersed with periods of silence on survey
results. Accordingly, CONTPROB was varied from 0 to 0.9. Negative continuation
probabilities were not modeled, because they would have resulted in hyper-dispersion of
songs, which would increase availability and enhance detection. Availability ceases to be
a serious problem in that region of parameter space, which was therefore not studied.

Few empirical data exist for validating the range of bout structure produced by this
simulation model. A Least Bell’s Vireo produced 4-14 runs per hour during the morning
hours on 7 days distributed throughout the breeding season (Scott et al. unpublished).
These values are intermediate in the range of values produced by the simulation model.
The same vireo averaged 6 to 13 songs per minute, with a maximum of 24, also within
the range simulated. These comparisons, though sparse, suggest that the model was
successful at bracketing natural values.

THE MODEL

The expected value of total songs was constant across CONTPROB, because (1) the initial
behavior of each series in a bout was generated independently with the same probability
PROBSING, regardless of the value of CONTPROB, and (2) CONTPROB was the same for both



states of the SING state variable. But it was not clear in advance that the duration of the
simulated soundscapes (one hour) was adequate for these expected values to be realized
in simulations with high values of continuation probability. As it turned out, one hour
provided sufficient time for expected values to be realized, as shown by the results of the
ANOVA.

The CONTPROB parameter was used to generate bout structure. The higher the value of
this continuation probability, the more highly-structured became the hour of behavior.
The resulting clumping of songs made for longer periods of singing and silence, and
these periods of silence often exceeded 1 min in duration. Consequently, AVAILABILITY
was well below 1 under many combinations of PROBSING and CONTPROB. The model
therefore easily generated a wide range of values of AVAILABILITY under a realistic range
of values for the generating parameters.

With such simple input, why is the relationship between singing rate and AVAILABILITY
(Fig. 1) not linear? It is a power function, not because of the input, but because of the
way AVAILABILITY is defined, which in turn depends upon the rules for counting an
individual in point counts. In standard point-count practice, one or more songs in a
minute (or other count period) have the same effect, namely making AVAILABILITY 1 for
that period. The steep portion of each curve is where s is less than one per count period.
The flat portion is the incremental increase in AVAILABILITY with additional songs, filling
in for stochastic misses.

Question 1. Short-term Singing Rate Predicts Availability

A better predictive model of AVAILABILITY on singing rate could perhaps be achieved by
modeling the power function, but that would require an estimate of CONTPROB from
sample data. R / C1 is such an estimator, but it is a bad one. In regressions of CONTPROB
on estimates of this parameter, based on sample sizes of 1, 2, 5, 10, 25, 50, and 60 2-min
sequences, the coefficient of determination varied from 0.01 to 0.05. Why is the fit so
bad? CONTPROB operates at the level of the song, and with 30 songs possible in a minute,
its effect apparently is buffered at this level. Minute-to-minute autocorrelation is
measured by the number of runs per hour, which is complexly related to both CONTPROB
and PROBSING. Runs per hour increases with CONTPROB at high probabilities of singing,
but decreases with CONTPROB at low probabilities of singing (Fig. 4). Estimating
CONTPROB from sample data will therefore probably require estimates of the inter-song
interval, which would be too tedious and time-consuming for point-count observers. It
appears that a simple method for estimating availability from singing rate may be
difficult to devise.

Question 2. Short-term Presence/Absence of Song Predicts Availability

The fact that a small number of very brief samples does not produce an adequate estimate
of availability is not particularly damaging to the removal model, because it, like other
recent models, does not attempt to estimate N for individual point count stops. In these
models, individual point counts are pooled, leading to a single estimate of P, resulting in



a single  estimate of N or D for the collection of sites. This is in contrast to spot-mapping,
area search, and other intensive methods that produce estimates of D for each intensively
studied area.

  Even if two 1-min count periods were used with the Farnsworth et al. (2002) model, a
sample of 25 counts would yield a very serviceable estimate of availability, according to
the present study. Using more than two periods, of more than 1-min duration, as proposed
(Farnsworth et al. 2002), should improve the estimate, although this assumption should
be tested. Moreover, lower mean continuation probabilities in nature would raise the
upper curve in Figure 3.

Availability is a continuous variable that can assume any value from 0 through 1. In this
simulation, 0 and 1 are the only possible counts in a single sample, so they are also the
only possible values of R11. The number of possible values for this estimate of
AVAILABILITY is of course n + 1, where n is the number of samples taken. In the
simulation, values of 0 and 1 were modal up through n = 25, which was the point at
which r2 reached 0.9. In the removal method (Farnsworth et al. 2002), the count of
individuals can be > 1, so the same precision in the estimate of availability should be
achievable at a smaller sample size.

RELEVANCE TO BBS

The results of this simulation study, coupled with the recent release of the removal model
(Farnsworth et al. 2002), offer hope that detection probability, or at least a major
component of it (availability), can be estimated from data collected on the BBS, without
major expense or inconvenience to the observers. The observer would simply divide the
3-min count period into two consecutive time segments, then tally all individuals detected
in the first segment, and classify each individual detected in the second segment as either
“new” or “recapture.” Estimation of availability would become part of the data analysis
conducted by the BBS office at Patuxent.

Estimates of availability obtained with the removal method, or other methods based on
mark-recapture logic, will be immune to observer variability, because observer-specific
sources of bias will affect the counts in both segments of each stop, and therefore will
cancel out. This feature is one of the main practical benefits of separating detection
probability into availability, which is independent of the observer, and detectability,
which (as defined above) is a function of observer aptitude.

Availability does vary with environmental conditions (e.g., wind, temperature), of course,
but these are likely to be highly correlated throughout the route. Because availability will
be estimated for each route, another major source of bias, the effect of environmental
conditions, will also be estimable. The BBS has always collected data on wind
conditions, but heretofore it has been possible only to correlate counts with Beaufort
state. Raw counts, however, are confounded by abundance, which is not “caused” by
wind conditions, while availability to an important degree probably is. Regressing



availability on wind conditions will be much more informative than regressing estimates
of abundance on wind conditions.

Recently, Rosenberg et al. (2002) estimated the change in availability with time of day
for each species well-surveyed by the BBS. This enabled them to calculate a species-
specific correction factor for each stop on a BBS-route. These corrections were relative to
the stops with the highest counts, typically those early in the counts (i.e., early in the
morning), but in some cases (e.g., buteos) toward the end of the route. An availability of
1 was implicitly assumed for these stops. The mean availability calculated from the
temporal corrections was taken to be detection probability (i.e., including detectability as
well as availability), and abundance of each species on the BBS, and in the BBS sample
area, was estimated. Several years of route-specific availability estimates would make it
possible to increase the accuracy of these estimates of abundance, because the true
maximal availability would be estimated more accurately. This would result in either no
change or upward adjustments of the estimates of abundance. Conversely, these BBS-
wide estimates of temporal changes in availability will be useful in correcting the route-
specific estimates for temporal effects. More work will be needed to determine the
optimal integration of the two estimates.

COUNTS VS. PRESENCE/ABSENCE

For the half-century or so in which quantitative land bird surveys have been conducted,
the parameter of interest has been abundance, N, or density, D = N / A, where A is the
area in which the count was taken. During this time, presence/absence data have also
been collected, often less formally, and these data have typically been treated with less
confidence. The movement to reform land bird survey techniques by giving serious
attention to estimating detection probability, P, (Nichols et al. 2000, Buckland et al.
2001, Bart and Earnst 2002, Rosenstock et al. 2002, Farnsworth et al. 2002, and
especially Thompson 2002), was first focused on methods that estimate N. Recently,
estimation of detection probabilities for presence/absence data has also been addressed
(MacKenzie et al 2002, Royle and Nichols 2003). For these latter models, the parameter
of interest is Proportion of Area Occupied (PAO).

These results of this study are relevant to PAO models, also, as to any method that
includes a means, explicit or implict, of estimating availability. I chose to model
availability of a single bird in this study, because the concept of availability is largely
unexplored, and it seemed prudent to take the exploration one step at a time. This
restriction to a single bird does not mean that this is a presence-absence model. The bird
is always present in this model, it is only its behavior and availability that vary. In
presence-absence models, birds are either present or absent, and determining whether
apparent absence is a false or true negative is complicated by their availability and
detectability.

This study has shown once again the usefulness of simulation modeling for exploring the
intricacies of detection probability (see Royle and Nichols 2003). The results were
counterintuitive, at least for the author, which shows that no question should go



uninvestigated. The encouraging results of this study should lead in two directions. First,
additional simulation modeling should explore the effects of multiple time periods, and
multiple individuals, on the estimation of AVAILABILITY with R11. In other words, the
simulation model should be as general at the situations for which the removal model
(Farnsworth et al. 2002) was designed. Second, the conclusions reached here should now
be validated with real data, because the results reported here suggest that the usefulness
of such data will justify the expense of collecting and processing them.
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FIGURE LEGENDS

Figure 1. Effect of probability of singing (PROBSING) on AVAILABILITY. Each curve is for
a different value of continuation probability (CONTPROB). Each data point is the mean of
10 replicates for the specified combination of CONTPROB and PROBSING. AVAILABILITY
increases rapidly with PROBSING (and also with songs per minute (SPM), which is
perfectly correlated with PROBSING), but this increase is slowed increasingly by
increasing values of CONTPROB. The tendency to continue (which produces bout structure
is this model) therefore decreases AVAILABILITY. See Figure 2 for more detail.

Figure 2. Effect of continuation probability (CONTPROB) on AVAILABILITY. Each curve is
for a different value of PROBSING. Each data point is the mean of 10 replicates for the
specified combination of CONTPROB and PROBSING. For each value of PROBSING,
increasing CONTPROB leasds to monotonic decrease in AVAILABILITY. AVAILABILITY is
<< 1 for PROBSING < 0.1. The expected value of AVAILABILITY is 1 for PROBSING = 0.05
(see tex), so the 20% reduction in AVAILABILITY at CONTPROB = 0 is the effect of
stochasticity. Therefore, according to this graph, PROBSING = .15, which has an expected
singing rate of 4.5 songs per minute, is needed to counteract stochasticity when singing is
not organized into bouts.

Figure 3. Coefficient of determination (r2) for the prediction of AVAILBILITY from brief
estimates of  “recapture rate” (R11, the proportion of minutes containing a song that were
preceded by a minute containing a song) and singing rate (SONGS), based on different
sample sizes. The estimate of R11 was based on two consecutive 1-min time segments;
the estimate of SONGS was based on 1-min samples. The coefficient of determination
quantifies the proportion of the variation in AVAILABILITY explained by the predictor, and
is based in each case on 10 reps of all combinations of CONTPROB and PROBSING, so these
results are general. Although brief estimates of singing rate do explain some 40% of the
variation in AVAILABILITY, this inadequate fit cannot be improved by increasing the
number of such samples. Pooling brief estimates of recapture rate, on the other hand, can
give a very good estimate of AVAILABILITY.

Figure 4. Runs per hour as a function of CONTPROB. In this case a run is a string of
minutes of silence or of singing (at least one song in each minute), so the maximum
number of runs is 60. Runs measure the amount of nonrandomness in sequences of two
character states; a low number indicates clumping, while a high number means the data
are hyper-dispersed. For the purposes of the present study, the most important point
illustrated by this graph is that runs per hour does not bear a simple relationship to
CONTPROB, and therefore runs, though relatively easy to measure in the field, will not
serve as a useful estimator of CONTPROB. This graph also shows that minute-to-minute
singing was most nearly random (high runs-per-hour) with low probabilities of singing
and continuing or high values of both parameters. AVAILABILITY tended toward 1 with
high PROBSING,  regardless of CONTPROB (Fig. 1), and runs were constrained to very low
values in these situations.
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a different value of continuation probability (CONTPROB). Each data point is the mean of
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Figure 2. Effect of continuation probability (CONTPROB) on AVAILABILITY. Each curve is
for a different value of PROBSING. Each data point is the mean of 10 replicates for the
specified combination of CONTPROB and PROBSING. For each value of PROBSING,
increasing CONTPROB leasds to monotonic decrease in AVAILABILITY. AVAILABILITY is
<< 1 for PROBSING < 0.1. The expected value of AVAILABILITY is 1 for PROBSING = 0.05
(see tex), so the 20% reduction in AVAILABILITY at CONTPROB = 0 is the effect of
stochasticity. Therefore, according to this graph, PROBSING = .15, which has an expected
singing rate of 4.5 songs per minute, is needed to counteract stochasticity when singing is
not organized into bouts.
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FIGURE 3

Figure 3. Coefficient of determination (r2) for the prediction of AVAILBILITY from brief
estimates of  “recapture rate” (R11, the proportion of minutes containing a song that were
preceded by a minute containing a song) and singing rate (SONGS), based on different
sample sizes. The estimate of R11 was based on two consecutive 1-min time segments;
the estimate of SONGS was based on 1-min samples. The coefficient of determination
quantifies the proportion of the variation in AVAILABILITY explained by the predictor, and
is based in each case on 10 reps of all combinations of CONTPROB and PROBSING, so these
results are general. Although brief estimates of singing rate do explain some 40% of the
variation in AVAILABILITY, this inadequate fit cannot be improved by increasing the
number of such samples. Pooling brief estimates of recapture rate, on the other hand, can
give a very good estimate of AVAILABILITY.
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FIGURE 4

Figure 4. Runs per hour as a function of CONTPROB. In this case a run is a string of
minutes of silence or of singing (at least one song in each minute), so the maximum
number of runs is 60. Runs measure the amount of nonrandomness in sequences of two
character states; a low number indicates clumping, while a high number means the data
are hyper-dispersed. For the purposes of the present study, the most important point
illustrated by this graph is that runs per hour does not bear a simple relationship to
CONTPROB, and therefore runs, though relatively easy to measure in the field, will not
serve as a useful estimator of CONTPROB. This graph also shows that minute-to-minute
singing was most nearly random (high runs-per-hour) with low probabilities of singing
and continuing or high values of both parameters. AVAILABILITY tended toward 1 with
high PROBSING,  regardless of CONTPROB (Fig. 1), and runs were constrained to very low
values in these situations.
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